Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Chem Biol ; 29(7): 1113-1125.e6, 2022 07 21.
Article in English | MEDLINE | ID: covidwho-1894864

ABSTRACT

The increasingly frequent outbreaks of pathogenic viruses have underlined the urgent need to improve our arsenal of antivirals that can be deployed for future pandemics. Innate immunity is a powerful first line of defense against pathogens, and compounds that boost the innate response have high potential to act as broad-spectrum antivirals. Here, we harnessed localization-dependent protein-complementation assays (called Alpha Centauri) to measure the nuclear translocation of interferon regulatory factors (IRFs), thus providing a readout of innate immune activation following viral infection that is applicable to high-throughput screening of immunomodulatory molecules. As proof of concept, we screened a library of kinase inhibitors on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and identified Gilteritinib as a powerful enhancer of innate responses to viral infection. This immunostimulatory activity of Gilteritinib was found to be dependent on the AXL-IRF7 axis and results in a broad and potent antiviral activity against unrelated RNA viruses.


Subject(s)
COVID-19 , Virus Diseases , Antiviral Agents/pharmacology , Humans , Immunity, Innate , SARS-CoV-2 , Virus Diseases/drug therapy
2.
Mol Immunol ; 135: 268-275, 2021 07.
Article in English | MEDLINE | ID: covidwho-1211073

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have triggered global pandemic that continue to impact adversely human health. New understanding has emerged about the innate and adaptive immune responses elicited in SARS-CoV-2 infection. The understanding of innate immune responses generated in hosts early in SARS-CoV-2 infection is vital for treatment efforts. Antiviral cytokines are released by innate immune cells in response to viral infections that play a pivotal role in limiting viral replication, pathology and generating optimal adaptive immune responses alongside the long-term memory responses against reinfections. One aspect of innate immune response generated against SARS-CoV-2 in vivo and which has received much attention has been high proinflammatory cytokine release in COVID-19 patients. Another vital discovery has been that the antiviral cytokine type I Interferon (IFN) family IFN-α mediates upregulation of angiotensin converting enzyme 2 (ACE2) membrane protein in airway epithelial cells. ACE2 is a receptor that SARS-CoV-2 binds to infect host cells. New understanding has emerged about the mechanism of SARS-CoV-2 induced exaggerated proinflammatory cytokine release as well as transcriptional regulation of ACE2. This review discusses various mechanisms underlying SARS-CoV-2 induced exaggerated proinflammatory cytokine response as well as transcriptional regulation of ACE2 receptor. We further elaborate on adaptive and memory responses generated against SARS-CoV-2.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunity, Innate , Immunologic Memory , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , COVID-19/pathology , Humans , Transcriptional Activation/immunology
3.
New Microbes New Infect ; 41: 100853, 2021 May.
Article in English | MEDLINE | ID: covidwho-1104189

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19), resulting in acute respiratory disease, is a worldwide emergency. Because recently it has been found that SARS-CoV is dependent on host transcription factors (TF) to express the viral genes, efforts are required to understand the molecular interplay between virus and host response. By bioinformatic analysis, we investigated human TF that can bind the SARS-CoV-2 sequence and can be involved in viral transcription. In particular, we analysed the key role of TF involved in interferon (IFN) response. We found that several TF could be induced by the IFN antiviral response, specifically some induced by IFN-stimulated gene factor 3 (ISGF3) and by unphosphorylated ISGF3, which were found to promote the transcription of several viral open reading frame. Moreover, we found 22 TF binding sites present only in the sequence of virus infecting humans but not bat coronavirus RaTG13. The 22 TF are involved in IFN, retinoic acid signalling and regulation of transcription by RNA polymerase II, thus facilitating its own replication cycle. This mechanism, by competition, may steal the human TF involved in these processes, explaining SARS-CoV-2's disruption of IFN-I signalling in host cells and the mechanism of the SARS retinoic acid depletion syndrome leading to the cytokine storm. We identified three TF binding sites present exclusively in the Brazilian SARS-CoV-2 P.1 variant that may explain the higher severity of the respiratory syndrome. These data shed light on SARS-CoV-2 dependence from the host transcription machinery associated with IFN response and strengthen our knowledge of the virus's transcription and replicative activity, thus paving the way for new targets for drug design and therapeutic approaches.

4.
Arterioscler Thromb Vasc Biol ; 41(2): 614-627, 2021 02.
Article in English | MEDLINE | ID: covidwho-1105574

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Receptor for Advanced Glycation End Products/metabolism , Adipocytes/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , COVID-19/epidemiology , Cytokine Release Syndrome , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Humans , Interferon Regulatory Factor-7/metabolism , Lung/metabolism , Myocardium/metabolism , NF-kappa B/metabolism , Obesity/complications , Obesity/metabolism , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL